سنعيد كتابة العلم بأبجدية عربية

  • الرئيسية
  • الفئات
  • الباحثون السوريون TV
  • من نحن
  • اتصل بنا
  • About Us
x
جارِ تحميل الفئات

دوائر تدور على دوائر!

الرياضيات >>>> الرياضيات


تم حفظ حجم الخط المختار

Image: Syrian researchers

يمكنك الاستماع للمقالة عوضاً عن القراءة

فعّل واجهة الاستماع

كثيرة هي التساؤلات التي نواجهها بشكل يومي رياضية كانت أم غير رياضية و التي نحاول بحوار ذاتي بسيط أن نوجد لها حلولاً تناسب هذه التساؤلات، لكن هل كل هذه الحلول صحيحة؟ في هذا المقال سنعرض مسألة بسيطة تثبت أن أغلب الأجوبة البديهية والسريعة... ليست صحيحة دوماً!

تخيل.. دائرة بنصف قطر يبلغ 1 CM تدور على محيط دائرة يبلغ نصف قطرها 4 CM.
كم عدد الدورات التي ستقوم بها الدائرة الصغيرة؟
إن محيط دائرة بنصف قطر r هو 2πr لذا يكون محيط دائرة بنصف قطر 4r هو 8πr ومنه: 8πr/2πr=4
لذا سيكون عدد الدورات هو 5.. هل صدمت؟ لقد توقعت بأنها 4، أليس كذلك؟ حصل معي نفس الشي!
لقد قرأت تفسير كون هذه الإجابة هي الإجابة الصحيحة، وعلى الرغم من أن المنطق كان مألوفاً، لكني أخذت وقتاً لا بأس به قبل أن أقنع نفسي بحق أن حلي أو جوابي كان خاطئا.
لقد وجدت هذه المسألة مثيرة للاهتمام لذا قدمتها لبعض الناس، البعض أجاب بسرعة 4! كما فعلت، ومثلي من كان من الصعب إقناعهم بخلاف ذلك، قلّة قليلة استطاعوا بحدسهم أن يروا أن 5 هو الجواب الصحيح.

و الآن، برأيكم ما أفضل طريقة للتفكير في هذه المسألة؟
بدلاً من الدوران على طول محيط الدائرة الكبيرة، ابدؤوا بتخيل الدائرة الصغيرة تدور على خط مستقيم بنفس طول محيط الدائرة الكبيرة، في هذه الحالة من الواضح أننا سنفكر بأن طول الخط هو 8πr وحدة طول.
لذا وبوضوح ستكون الدائرة الصغيرة قد قامت بِ 8πr/2πr=4 دورات، بعد ذلك تخيّل بأن الدائرة تنزلق على طول الخط بدون أن تدور، لذا النقطة من الدائرة الصغيرة ستبقى نفسها.
الآن تأمل في الفرق بين الإنزلاق على طول خط مستقيم وبين فعل المثل على طول محيط دائرة.

إذا زلقت 8πr وحدات طول، على طول خط مستقيم، ستصل إلى مكانك المقصود مثلما بدأت، بدون أي تغيير في توجيهك، ولكن إذا فعلت نفس الشئ على طول محيط دائرة ستكون قد قمت بدورة كاملة بنفس الوقت الذي ستعود فيه لنقطة البداية عندما نقوم بالدوران على نفس المحيط، بناء على ذلك ستكون قد قمت بأربع دورات وبدورة واحدة من الإنزلاق بجموع 5 دورات!
بعبارة أخرى: عندما تدور الدائرة الصغيرة على طول محيط الدائرة الكبيرة يحدث نوعان من الحركات في آن واحد، الدوران حول نفسها، والدوران حول الدائرة الكبيرة، الأربع حركات التي توقعناها في البداية هي الأربع حركات من الدوران حول الدائرة الكبيرة، ربما لأن هذه الحركات يمكن رؤيتها بسهولة، من ناحية أخرى ملاحظة دوران الدائرة حول نفسها أصعب للإدراك.

من الصعب إحراز تقدم في مثل هذا النوع من المسائل من خلال التفكير بها فقط، لذا من الضروري التحقق من الحالة من خلال التجريب، وعلى سبيل المثال: يمكنك نمذجة هذه المسألة باستخدام قطعتي نقود.
إذا اتبعت المسألة توقعات أغلب الناس، عندها و عندما نستخدم قطعتين من نفس الحجم، القطعة المتحركة ستدور 2πr/2πr=1 أي دورة واحدة، لكن كما سنرى في الصورة التالية، ستفعل ذلك مرتين، أي ستدور مرتين بدلاً من مرة واحدة.
و على سبيل المثال: من الممكن أن نتوقع بأن الدوران من قمة القطعة النقدية الثابتة حتى أسفلها سينتج بأن تكون القطعة المتحركة معكوسة أي رأساً على عقب، لكن في الحقيقة ستكون وبشكل غير متوقع قد قامت بدورة كاملة حتى تلك النقطة!


Image: Syrian researchers

إذا كنت تجد صعوبة في فهم التطبيق على دائرة، تخيل! ماذا من الممكن أن يحدث على مربع؟!
عندما تدور دائرة على طول المحيط، فإنها ستضطر لأن تدور 90 درجة إضافية لتكمل إلى الضلع التالي، وهذا سيحدث مجدداً ومجدداً على كل زاوية، وبما أن 90*4=360 فإن هذا سيحسب كدورة كاملة إضافية.
كل تفسير من التفسيرات أعلاه، يحلل حركة الدائرة إلى حركتين: الدوران حول نفسها و الدوران حول مركز آخر، ولكن هذا لا يمكن أن يحدث في الواقع فالحركتان تحدثان معاً، و فصل هاتين الحركتين مساعد للفهم لكن القيام بهذا الفصل لا يقدم حلاً جذرياً.
البعض يقول بأن تركيبة أدمغتنا لا تسمح بتعدد المهام، ولكن التعلم بأن نفهم مثل هذه الظواهر في وقت واحد سيكون له قيمة كبيرة.

المصدر:
هنا

مواضيع مرتبطة إضافية

المزيد >


شارك

تفاصيل

14-07-2015
6770
البوست

المساهمون في الإعداد

ترجمة: Muhammad Suleiman
تدقيق علمي: Amurru Zerouk
تعديل الصورة: Kenan Dada
صوت: Alexander Said
نشر: Michael Assaf

تابعونا على تويتر


من أعد المقال؟

Muhammad Suleiman
Amurru Zerouk
Kenan Dada
Alexander Said
Michael Assaf

مواضيع مرتبطة

كيف تمَّ التقاءْ «يساوي» ببعض الأصدقاءْ؟

شفرة أوكام: أحد أهم المبادئ المنطقية وأوسعها استخداماً

خفايا الرّياضيّة صوفي جِرمان

لانهاية...أم -1/12!

بعد ثلاثين عاماً من الجدل, الحساب المجالي يجد حلاً!

رسومات السانجاكو اليابانية تكشف عن الجانب المقدس في الرياضيات

إحتمالات جينيّة أنقذت حياتنا!

الرياضيات..أيضاً في السينما!

أسرار البشر البدائيين مع الرياضيّات

كيف يترجم غوغل الصور الى كلمات؟

شركاؤنا

روابط مهمة

  • الشركاء التعليميون
  • حقوق الملكية
  • أسئلة مكررة
  • ميثاق الشرف
  • سياسة الكوكيز
  • شركاؤنا
  • دليل الشراكة
جميع الحقوق محفوظة لمبادرة "الباحثون السوريون" - 2023