سنعيد كتابة العلم بأبجدية عربية

  • الرئيسية
  • الفئات
  • الباحثون السوريون TV
  • من نحن
  • اتصل بنا
  • About Us
x
جارِ تحميل الفئات

في عالم اللانهاية الجزء قد يساوي الكل

الرياضيات >>>> رياضيات في دقيقة


تم حفظ حجم الخط المختار

Image: SYR-RES

تعلَّمنا منذ كنَّا صغارًا كيف نعدُّ الأشياء، وكي نقارنَ الأعداد  والمجموعات قارِن إذًا مَنْ أكبر، عدد الأعداد الزوجية أم عدد الأعداد الفردية؟ العددان لانهاية، ولكن هل كل اللانهايات واحدة؟ حدسيًّا ستُجيب أنهما متساويتان، يبدو أنَّ المقارنة سهلة بسيطة، أليس كذلك؟ 

تمهل قليلًا، من أكبر إذًا مجموعة الأعداد الطبيعية كلها أم مجموعة الأعداد الزوجية فقط؟ يبدو أن مجموعة الأعداد كلها أكبر، فهي تتضمن الأعداد الزوجية ومعها الأعداد الفردية كذلك. ليس تحديدًا ما ذكرناه سالفًا هو لانهايات، وعند التعامل مع اللانهايات عليك أن تتوقعَ أشياءً عكس حدسك (1). 

في الواقع حجم مجموعة الأعداد الطبيعية = حجم مجموعة الأعداد الزوجية (1، 2).

وحجم مجموعة الأعداد الطبيعية = حجم مجموعة الأعداد الفردية (1, 2).

ماذا عن حجم مجموعة الأعداد الصحيحة ومجموعة الأعداد الطبيعية؟ حجم مجموعة الأعداد الصحيحة يبدو ضعفَ حجم مجموعة الأعداد الطبيعية الموجبة، فهي تحتويها إضافة إلى الأعداد السالبة، صحيح؟

في عالم اللانهاية حجم مجموعة الأعداد الطبيعية = حجم مجموعة الأعداد الصحيحة.

وحجم مجموعة الأعداد الطبيعية = حجم مجموعة الأعداد النسبية (2). 

وحجم مجموعة الأعداد الحقيقية الواقعة بين 0 و 1 فقط أكبر من حجم مجموعة الأعداد الطبيعية  (2).

وحجم مجموعة الأعداد غير النسبية أكبر من حجم مجموعة الأعداد النسبية (2)

علينا أن نقارن كأطفال لم يتعلموا العدَّ بعد. بالنسبة للطفل ليُقارن بين ما لديه من بسكويت وبين عدد أصدقائه، لن يعرفَ هل لديه ما يكفي إلا إذا زاوج بين كلِّ حبة بسكويت وبين أصدقائه كلهم واحدًا واحدًا، فإن بقي لديه بسكويت بعد أن أخذ الجميع سيعلم أن عدد البسكويتات أكبر من عدد أصدقائه، وإذا بقي أحد لم يحصل على البسكويت سيعلم أن عدد أصدقائه أكبر.

بالطريقة نفسها نقارن حجم المجموعات اللانهائية. رياضيًّا المزاوجة بين عناصر مجموعتين تعني وجود اقتران واحد لواحد وشامل بين المجموعتين (1, 2)، فمثلًا المزاوجة بين الأعداد الطبيعية والنسبية كالآتي:


Image: (1,2)

العد نفسه هو عملية مزاوجة بين الأعداد الطبيعية والأشياء التي نعدها (2).

في النهاية نقول: إنَّ اللانهاية ليست عددًا طبيعيًّا ولا حقيقيًّا، هي نوع وعالَمٌ آخر يُسمى الأعداد الكاردينالية "cardinal numbers" وأول من قارن بين اللانهايات هو جورج كانتور، وكما قال ديفيد هلبرت: "لا أحد يُمكنه طردنا من الجنة التي أدخلنا إليها كانتور" (3).

إعداد: Asel Kamel

المصادر:

 

1- Gamow G. One Two Three… Infinity: Facts and Speculations of Science. NY(USA): Dover Publications; 1988. P 15-20. Available from: هنا 
2- Cheng E. Beyond infinity. London: Profile Books; 2018. P 63-124. Available from: هنا 
3- Pires A. Hospitality at the Hilbert Hotel [Internet]. Institute for Advanced Study. 2016 [cited 11 June 2021]. Available from: هنا 

 

مواضيع مرتبطة إضافية

المزيد >


شارك

تفاصيل

11-01-2022
328

المساهمون في الإعداد

إعداد: Member
تدقيق علمي: Maissaa Markabi
تدقيق لغوي: إيمان الصغير
تصميم الصورة: Enaam Afaghani
نشر: Dima Yazji

تابعنا على لينكد إن


من أعد المقال؟

Member
Maissaa Markabi
إيمان الصغير
Enaam Afaghani
Dima Yazji

مواضيع مرتبطة

شعارا سوبرمان وباتمان كما يراهما Wolfram Alpha

الاحتمالات... وكشف الأمراض الوراثية

هل يمكن للرياضيات أن تحررنا من الحسد؟

رسومات السانجاكو اليابانية تكشف عن الجانب المقدس في الرياضيات

كرات البينغ بونغ, اللانهاية, والقوى العظمى!

كيف يترجم غوغل الصور الى كلمات؟

دوال فايرشتراس - Weierstrass function

أسرار البشر البدائيين مع الرياضيّات

طرائق ترميز المعادلات الرّياضيّة

مسألة الأصدقاء والغرباء

شركاؤنا

روابط مهمة

  • الشركاء التعليميون
  • حقوق الملكية
  • أسئلة مكررة
  • ميثاق الشرف
  • سياسة الكوكيز
  • شركاؤنا
  • دليل الشراكة
جميع الحقوق محفوظة لمبادرة "الباحثون السوريون" - 2022